Topology: Basic ideas

Yuri Dabaghian

Baylor College of Medicine & Rice University

dabaghian at rice.edu

Historical background

- Topology appeared in late XIX early XX century
 - H. Poincare (1895)
 - F. Hausdorff (1914)
- XIX century geometry century
 - N. Lobachevsky (1826)
 - J. Boliai (1829)
 - K. F. Gauss (1830s)
- Erlangen Program, F. Klein (1872)

What defines geometric properties?

Geometric characteristics: angles, lengths, etc.

$$1 = 2, 3 = 4$$

 $1 \neq 4, 5 \neq 6, 5 \neq 7$, etc.

- How to match figures in Euclidean geometry: use translations + rotations
- Other geometries other transformations, other geometric characteristics
- The larger the group of transformations, the fewer geometric properties
- What is the "largest" group of transformations?

What is the "largest" group of transformations that does not violate the structure of the space itself?

What is space? What is spatial continuity?

The fabric of space

- 1. Space consists of points
- 2. What turns a set of points into a space?
- 3. The notion of spatial proximity

... Take a subset of points

Tour de magie: define this set as a *proximity neighborhood*. From now on the *"red" points are neighbors*

0

0

Take another subset of points

Tour de magie 2: define this set as a *proximity neighborhood*. From now on the *"blue" points are also neighbors*

Take another subset of points

Tour de magie 3: define this set as another *proximity neighborhood*. From now on the *"green" points are also neighbors*

Take another subset of points

Tour de magie 4: define this set as another *proximity neighborhood*. From now on the *"purple" points are also neighbors*

Topology, definition

A set *X* with a system of neighborhoods, $T = \bigcup_{i} N_{i}$, such that:

1. The whole set X and the empty set are neighborhoods, $X \in T$, $\emptyset \in T$

i∈I

Continuous maps

Continuous maps: maps that preserve topological structure

Topology: area of mathematics concerned with spatial properties that are preserved under *continuous* deformations of spaces and geometric objects

Intuitively: elastic stretches and deformations are allowed, cutting and gluing is not

What are the topological properties ?

How to define them?

How to describe them?

How to compute them?

Path connectedness

Path: $I = [0,1] \rightarrow \gamma(t)$

Path connectedness

Path:

 $I = \begin{bmatrix} 0, 1 \end{bmatrix} \rightarrow \gamma(t)$

 $\gamma(0) = y, \ \gamma(1) = w \dots ?$

Path connectedness

Path connectedness: there are **3** types of paths

Paths

Path γ $I = [0,1] \rightarrow \gamma(t)$

Are there "path types",[γ]?

Fundamental group

Path
$$\gamma$$

 $I = [0,1] \rightarrow \gamma(t)$

1. Use closed paths $S^1 \rightarrow \gamma(t)$

Equivalence class, $[\gamma]$, is defined, $\gamma \rightarrow [\gamma]_m$

Topological index m of the path $[\gamma]_m$

Fundamental group

1. Use closed paths $S^1 \rightarrow \gamma(t)$

2. Paths combine: $\gamma_1 \cdot \gamma_2 = \gamma_3$

3. Equivalence classes combine: $[\gamma_1] \cdot [\gamma_2] = [\gamma_3]$

Topological index combines: $[\gamma_1]_m \cdot [\gamma_2]_n = [\gamma_3]_{n+m}$ (n,m) $\rightarrow n+m$

 $(paths) \rightarrow (indexes)$

Fundamental group, $\pi_1(X) = \mathbb{Z}$

Two holes

 $\gamma \longrightarrow \left[\gamma\right]_{(index?)}$

Two holes

$$\gamma \to [\gamma]_{(m,n)}$$

$$[\gamma_1]_{(m_1,m_2)} \cdot [\gamma_2]_{(n_1,n_2)} = [\gamma_3]_{(m_1+n_1,m_2+n_2)}$$

Fundamental group, $\pi_1 = \mathbb{Z} \otimes \mathbb{Z}$

3 holes

 $\gamma = \left[\gamma\right]_{(m,n,k)}$

Fundamental group, $\pi_1 = \mathbb{Z} \otimes \mathbb{Z} \otimes \mathbb{Z}$

Fundamental group, examples

How useful are topological indexes?

Topological equivalence and homotopies

Topological equivalence and homotopies

Applied Topology: knots

Applied Topology: embedding aspect

The fundamental group of the knot complements in \mathbb{R}^3 are different

$$\pi_1(R^3 \backslash \mathfrak{M}) \neq \pi_1(R^3 \backslash \mathfrak{O})$$

 \implies knots are different

Applied Topology: links

The topological cycle of a replicon, EMBO reports (2004)

Meditation on Homotopy of Embedding

Igor Nikitin

Summary

- 1. Topology, the idea
- 2. The notion of continuity
- 3. Topological indexes
- 4. Fundamental group

Next: Simplicial complexes and homologies

Literature:

- 1. J. Munkres, "Topology" (2000) and "Elements Of Algebraic Topology" (1996)
- 2. A. Zomorodian, "*Topology for computing*", (2009)
- 3. A. Hatcher, "Algebraic Topology", (2002), http://www.math.cornell.edu/~hatcher/AT/ATpage.html